The q-Log-convexity of the Narayana Polynomials of Type B

نویسندگان

  • William Y. C. Chen
  • Robert L. Tang
  • Larry X. W. Wang
  • Arthur L. B. Yang
چکیده

We prove a conjecture of Liu and Wang on the q-log-convexity of the Narayana polynomials of type B. By using Pieri’s rule and the JacobiTrudi identity for Schur functions, we obtain an expansion of a sum of products of elementary symmetric functions in terms of Schur functions with nonnegative coefficients. By the principal specialization this, leads to q-logconvexity. We also show that the linear transformation with respect to the triangular array of Narayana numbers of type B is log-convexity preserving.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur positivity and the q-log-convexity of the Narayana polynomials

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...

متن کامل

Linear Transformations Preserving the Strong $q$-log-convexity of Polynomials

In this paper, we give a sufficient condition for the linear transformation preserving the strong q-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong q-log-convexity. In addition, our results not only extend some known results, but also imply the str...

متن کامل

Log-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations

Let Pn,k be the number of permutations π on [n] = {1, 2, . . . , n} such that the length of the longest increasing subsequences of π equals k, and let M2n,k be the number of matchings on [2n] with crossing number k. Define Pn(x) = ∑ k Pn,kx k and M2n(x) = ∑ k M2n,kx . We propose some conjectures on the log-concavity and q-log-convexity of the polynomials Pn(x) and M2n(x).

متن کامل

The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings

The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009